
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Applications of Graph Theory and Minimum

Spanning Trees in Architectural Wiring Diagram

Design

Nathanael Shane Bennet – NIM 13524119

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: shane150806@gmail.com , 13524119@std.stei.itb.ac.id

Abstract—Architectural wiring diagrams are pictures that

show the approximate locations and interconnections of

receptacles, lighting, and permanent electrical services in a

building. Optimizing the layout of a wiring diagram can save

time and money involved in the installation of said wiring. This

paper examines the implementation of Prim’s algorithm to find

the minimum spanning tree for a weighted graph and

investigates the use of restrictions to adjust the graph based on

real-life situations.

Keywords—graph theory, minimum spanning tree,

optimization, wiring diagram, tree, Prim’s algorithm

I. INTRODUCTION

An architectural wiring diagram serves as a comprehensive
visual representation or blueprint that details the entire
electrical wiring system within a building or a specific room.
Unlike schematic diagrams, which focus on the theoretical
operation of circuits, architectural wiring diagrams emphasize
the physical layout, showing the approximate locations and
interconnections of electrical components such as receptacles,
lighting fixtures, switches, circuit breakers, and permanent
electrical services. These diagrams use standardized symbols to
represent different types of devices, ensuring clarity and
consistency for electricians, engineers, and inspectors involved
in the design, installation, and maintenance processes.

Fig. 1. An example of an architectural wiring diagram. (Source:

https://www.edrawmax.com/house-wiring-diagram/)

Wiring diagrams are indispensable tools in both the
planning and execution phases of electrical installation. They
not only guide the initial installation by illustrating how each
component should be connected, but also serve as essential
references for troubleshooting, upgrades, and repairs
throughout the building’s lifecycle. By providing a clear map
of the wiring routes and device placements, these diagrams
help ensure that electrical power is distributed efficiently and
safely to operate a wide range of devices and appliances.
Furthermore, accurate wiring diagrams are often required by
regulatory authorities to verify compliance with safety
standards and approve connections to the public electrical
supply system.

Optimizing the design process of a wiring diagram can
significantly reduce both the time and materials required for
installation, while also minimizing the risk of workplace
injuries associated with inefficient layouts or excessive wiring.
One effective method for achieving such optimization is the
application of graph theory, specifically by using a minimum
spanning tree (MST) to visualize the shortest and most cost-
effective set of paths between electrical fixtures. By
minimizing the total length of wiring needed, designers can
reduce material costs and simplify installation procedures.

This paper explores the implementation of Prim’s algorithm
in the context of architectural wiring diagram design. The study
investigates how Prim’s algorithm can be used to identify the
optimal wiring paths that connect all necessary fixtures with
the least total wire length. Additionally, the paper examines the
impact of applying algebraic restrictions to the underlying
graph, analyzing how these constraints affect the resulting
network topology and overall efficiency.

II. THEORETICAL FRAMEWORK

A. Graph Theory

Graph theory is a branch of mathematics dedicated to
studying graphs, which are abstract structures used to model

mailto:shane150806@gmail.com
mailto:13524119@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

pairwise relationships between entities or objects. In this
context, a graph is formally defined as a collection of vertices
(also called nodes or points) and edges (also referred to as arcs,
links, or lines) that connect pairs of vertices. The edges can be
either undirected (signifying a two-way relationship) or
directed, signifying a one-way relationship from one vertex to
another.

The origins of graph theory date back to 1735, when
Leonhard Euler solved the famous Königsberg bridge problem,
laying the foundation for the field. Since then, graph theory has
become a fundamental area within discrete mathematics, with
wide-ranging applications in computer science, engineering,
social sciences, biology, and more. For example, graphs are
used to model communication networks, transportation
systems, social networks, and molecular structures.

Graphs can be further classified based on their properties.
For instance, a graph is called Eulerian if it contains a circuit
that traverses every edge exactly once, and weighted if each
edge is assigned a numerical value, which is particularly useful
in optimization problems such as finding the shortest path or
minimum spanning tree. The study of graphs also includes
concepts such as graph coloring, connectivity, and subgraphs,
each providing tools for analyzing complex relational data.

B. Tree

Within graph theory, a tree is a special type of graph
characterized by being connected and acyclic—that is, there is
a path between every pair of vertices, and no cycles exist
within the structure. More formally, a tree with n vertices
always has exactly n−1 edges, and removing any edge from a
tree would disconnect the graph. Another equivalent definition
states that for any two vertices in a tree, there exists exactly one
unique path connecting them.

Fig. 2. An example of a tree. (Source: https://www.shmoop.com/computer-

science/graphs/trees.html)

Trees are fundamental in both theoretical and applied
contexts due to their strong structural properties. In computer
science, trees serve as essential data structures for organizing
and storing information efficiently, such as in file systems,
database indexing, and hierarchical data representation.
Additionally, trees are used in algorithms for searching,
sorting, and parsing, as well as in network design and data
compression techniques like Huffman coding.

A related concept is the forest, which is a disjoint union of
trees—essentially, a graph with no cycles that may not be
connected. In a tree, a vertex of degree one is called a leaf,
representing an endpoint in the structure.

C. Minimum Spanning Tree

A minimum spanning tree (MST) is the subgraph of an
edge-weighted graph that connects every vertex within the
graph, is a tree (contains no cycles), and has the minimum
combined edge-weight of all subgraphs that fulfill the previous
two conditions.

Fig. 3. An example of a minimum spanning tree. (Source:

https://byjus.com/gate/minimum-spanning-tree-notes/)

Minimum spanning trees play a crucial role in network design
and optimization. They are widely used in constructing
efficient communication, transportation, and utility networks,
ensuring that all points are connected with the least total cost.
Applications include designing computer and telephone
networks, road systems, and electrical grids, where minimizing
the overall connection cost is essential for efficiency and
resource management.

D. Prim’s Algorithm

Prim's algorithm is a greedy method used to identify a

minimum spanning tree within a weighted, undirected graph. It

selects a group of edges that connect all vertices without

forming any cycles, ensuring the sum of the edge weights is as

low as possible. The process begins with any chosen vertex and

progressively expands the tree by repeatedly adding the least

expensive edge that links the existing tree to a new vertex until

every vertex is connected.

III. IMPLEMENTATION

This paper conducts a comprehensive examination of
Prim's algorithm implementation for identifying minimum
spanning trees (MSTs) in wiring diagram optimization. The
methodology employs C programming language with strategic
library integration to achieve robust functionality. String.h and
stdlib.h enable advanced string parsing for user-defined
parameters, facilitate dynamic memory allocation for graph
structures, and provide pseudorandom number generation via
rand(). Time.h seeds random number generation using
srand(time(NULL)) to ensure non-repetitive coordinate
sequences.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Firstly, to represent a wiring diagram, we generate several
random coordinates using the rand() function within stdlib.h
and store them within an array.

Fig. 4. Code snippet used to generate random coordinates between (–1, –1, –

1) and (1,1,1).

Next, we create a complete graph from every vertex within
the diagram as the basis for our MST. We do this by iterating
through every combination of vertices, creating an edge
between them, and storing the edges in another array.

Fig. 5. Code snippet used to generate an edge between every unique pair of

vertices.

Using this complete graph, we create a minimum spanning
tree using Prim’s algorithm, using the length of the edge as its
weight.

Fig. 6. Code snippet used to create a MST out of a graph using Prim’s

algorithm.

A. Results

The results of the implementation are as thus:

Fig. 7. Series of random coordinates generated to represent a set of fixtures

in a wiring diagram.

Fig. 8. Same series of coordinates, visualized in desmos 3D.

Fig. 9. List of every edge between two unique pairs of vertices in Fig. 7,

written for compatibility with desmos 3D.

Fig. 10. Same list of edges, visualized in desmos 3D.

Fig. 11. Resulting MST from Prim’s algorithm.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 12. The MST, visualized in desmos 3D.

From the results, we can see that Prim’s algorithm is indeed
successful in creating a MST from the set of vertices. Checking
the distances between the two points that seem closest together
(marked in red and white) show that the chosen edge is the
shortest way to reach the right red point.

Fig. 13. Distance calculations for the original edge (left) and the proposed

edge (right, showing that the original edge is part of the MST.

B. Restrictions

In real-world spatial applications—such as plumbing
layouts, architectural planning, or circuit design—physical
barriers often prevent direct connections between vertices.
Examples include:

- Structural obstacles like walls, columns, or load-
bearing beams

- Functional constraints (e.g., preserving living spaces
between fixtures)

- Safety regulations requiring clearance zones

These limitations necessitate modifying graphs to exclude
impractical edges before applying algorithms like Prim's MST.
Without this step, the resulting connections would violate real-
world feasibility.

Any restriction that is composed of straight, orthogonal
edges (aligned with Cartesian axes) can be modeled with a
series of linear inequalities, like thus:

Fig. 14. Example set of restrictions and the visualization in desmos 3D.

We can see that the set of restrictions is composed of
several linear inequalities joined by OR (commas) and AND
(curly brackets) operands. This structure can be modeled with a
tree.

- Root node checks edge viability

- Branches split into sub-conditions (AND/OR layers)

- Leaf nodes represent atomic inequalities

This structure enables efficient edge validation through
recursive tree traversal.

Fig. 15. Tree representation of the set of restrictions from Fig. 14.

 To implement these restrictions, we check every edge to
see if at least part of the edge fulfills the restrictions. If part of
the edge does fulfill all the restrictions, we don’t add it to the
interim graph.

Fig. 16. Updated edge generation snippet, now cheking for restrictions before

adding the edge to the array.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

C. Results of Investigations on Restrictions

After generating another set of random coordinates, the
result of the updated implementation is as thus:

Fig. 17. MST generated from new set of coordinates.

From the results, we can see that the MST does follow the
restrictions inputted into the program, validating our
investigation.

IV. CONCLUSION

This study demonstrates that Prim’s algorithm is an
effective tool for optimizing architectural wiring diagrams by
generating a minimum spanning tree (MST) that connects all
electrical fixtures with the least total wire length. The
implementation successfully models wiring layouts as
weighted graphs, allowing the algorithm to identify the most
efficient paths and thereby reduce material costs and
installation time. Furthermore, the introduction of real-world
restrictions—such as physical barriers or inaccessible areas—
can be incorporated into the graph model using algebraic
constraints, ensuring that the generated MST adheres to
practical limitations commonly encountered in building design.
The results confirm that Prim’s algorithm not only produces
optimal wiring layouts in idealized conditions but also remains
robust and adaptable when faced with complex, real-life
constraints. This approach offers a systematic and scalable
method for improving the efficiency and safety of electrical
installations in architectural projects.

V. FURTHER WORK

While the current approach effectively models spatial
restrictions using linear inequalities and logical operators to
exclude impractical edges, further progress can be achieved by
incorporating non-linear restrictions. Many real-world
constraints—such as curved architectural features, irregular
safety zones, or complex functional boundaries—cannot be
accurately represented by linear inequalities alone. By
extending the model to support non-linear restrictions, such as
quadratic or polynomial inequalities, circular clearance zones,
or spline-defined obstacles, the graph pruning process can
better reflect realistic environments. This advancement would
require adapting the edge validation algorithm to handle more
complex geometric checks, potentially leveraging

computational geometry techniques or numerical solvers.
Consequently, the resulting minimum spanning trees (MSTs)
would not only respect orthogonal and linear constraints but
also conform to intricate spatial limitations, enhancing the
applicability and precision of the algorithm in diverse real-
world scenarios.

LINKS

Link to mega folder containing video:

https://mega.nz/folder/bYwggLrK#jhJgcQYydN-
cc353raSyEw

Link to github repo:

https://github.com/kalkabena/MST

ACKNOWLEDGMENT

The author of this paper wishes to sincerely express
heartfelt gratitude to God for His continuous blessings,
unwavering guidance, and profound support throughout every
stage of the experimental work and the entire writing process
of this research paper. Without His divine presence, the
successful completion of this study would not have been
possible.

In addition, the author would like to extend deep
appreciation to the lecturers of the IF1220 course, with special
thanks directed to Dr. Ir. Rinaldi Munir, M.T. His dedication to
teaching, generosity in providing extensive learning materials,
and the creation of numerous valuable learning opportunities
have greatly enriched the educational experience not only for
the author but for all students enrolled in the course. The
knowledge and insights gained under his mentorship have been
instrumental in shaping the author’s understanding and
approach to the subject matter.

Finally, the author is profoundly grateful to his family for
their unwavering love, patience, and constant encouragement
throughout his academic journey. Their moral support and
belief in his abilities have served as a vital source of motivation
and strength, enabling him to overcome challenges and persist
in his pursuit of academic excellence.

REFERENCES

[1] Discrete Mathematics, R. Johnsonbaugh, 5th ed., 2001.

[2] https://www.edrawmax.com/house-wiring-diagram/

[3] https://www.calculatorsoup.com/calculators/geometry-solids/distance-
two-points.php

https://www.edrawmax.com/house-wiring-diagram/
https://www.calculatorsoup.com/calculators/geometry-solids/distance-two-points.php
https://www.calculatorsoup.com/calculators/geometry-solids/distance-two-points.php

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 1 Juni 2025

Nathanael Shane Bennet, 13524119

